Close-Up Look at Sandy's Landfall: Mesoscale Modeling and Observations

James A. Schiavone, Kun Gao, David A. Robinson, Peter Johnsen and Mathieu Gerbush

November 12, 2019

Sandy's Impacts

- Sandy's biggest impacts were:
 - Devastating storm surge flooding
 - Extended power outages caused by massive tree-fall
 - 72 direct deaths, 20 of them caused by fallen trees
- Tree-fall was widespread but patchy *Why was it patchy?*
 - Hypothesize that patchiness was caused by roll vortices
- Key resources are leveraged in our Sandy landfall study:
 - *Resilient* New Jersey and Delaware state mesonets
 - 500-meter resolution Weather Research and Forecasting model
 - NOAA radar, surface and rawinsonde observations
- What I will cover:
 - Data resources
 - Overview of Sandy's landfall
 - Boundary layer wind and roll vortex concepts
 - Evidence of roll vortices in observations and simulation

Work Made Possible By . . .

- High resolution surface observations
 - New Jersey Weather and Climate Network (NJWxNet) mesonet
 - Delaware Environmental Observing System (DEOS) mesonet
 - NOAA's Automated Surface Observing Systems (ASOS) and National Data Buoy Center (NDBC)
- High resolution WRF simulation of Sandy
 - Run by Pete Johnsen, Mel Shapiro and Mark Straka on Cray XE6 at NCSA
 - NCAR's Dick Valent was instrumental in gaining access to the large 43 Terabyte data set
 - NCAR's Alan Norton provided invaluable help in using VAPOR Visualization and Analysis Platform

WRF Model Simulation

- Model: Advanced Research WRF version 3.3.1
- **System**: Cray XE6 "Blue Waters" at National Center for Supercomputing Applications (NCSA)
- Grid: 500 meter spacing, 5320x5000x150 grid, 4 billion grid points
- Initialization and boundary conditions: NOAA/NCEP GFS output
- Simulation period: 96 hours, beginning 12Z Oct 26, 2012
- Output: 30 minute interval, 193 files, 224 GB each, total of 43 Terabytes

Sandy Overview – Observations

NHC Analysis at 21Z on 29 October 2012

Sandy's Extratropical Airstreams

29 October 2012

GOES water vapor at 23:45Z

Descending Dry Air

Cold Conveyor

Warm Sector Traversal of NJ Mesonet

Fort Dix Radar Wind Speed Profiles

Sandy Overview – Model

Storm Track Comparison

9/26/2020

WRF Cold Air Encirclement of Sandy

Surface Wind Field Comparison

Time Series Comparison Sample

Inland NJ – 10m

Oceanic – 5m

Roll Vortices

- Concepts
- *Radar* roll vortex signatures
- *Model* roll vortex signatures
- *Wind observation* roll vortex signatures
- Impact on wind and trees

Concepts – Boundary Layer and Winds

Boundary layer: Air layer most affected by earth's surface Hurricane winds peak near top of

Schiavone, Gao, Robinson, Johnsen, Gerbush

Concepts – What Are Roll Vortices?

Observed in 12 prior hurricanes but mostly over open waters

- Lines of downward motion, higher surface winds, possible patchy treefall, and diminished precipitation
- Often propagate sideways

Adapted from Brooks/Cole – Thomson (2005)

1-Minute Speed Time Series

Wind Speed Autocorrelation

Roll Signatures in Radar Precipitation

Schiavone, Gao, Robinson, Johnsen, Gerbush

Roll Vortex Signatures in Radar Velocity

Radial Velocity Confluence Lines

Reflectivity With Confluence Lines

Roll Vortex Signatures in Model

Wind Speed Vertical Section - Model

WRF Wind Speed "Footprints"

- Spatially *smooth* wind speed and subtract it from *raw* wind speed
- This yields wind speed *deviation* from local mean wind speed:
 Red = high Blue = low
- Speed deviation exhibits roll "footprints" of alternating lines of high and low wind speed

Roll Excess Wind Risk

Roll Vortex Sizes and Clusters

Kun Gao's Roll Model vs. WRF

Sandy's Wind Impact on Tree-fall

Summary

- Data analyzed
 - Radar and surface wind speed observations, WRF simulation, specialized roll vortex model

• Key findings

- Observations exhibit many characteristics expected of rolls
- WRF simulation and roll vortex model corroborate many aspects of observations
- Therefore, confirm presence of roll vortices during Sandy's landfall
- First time that roll vortices this large are reported under a landfalling hurricane

• Yet to be done

- Can it be shown that tree-fall patches are indeed caused by roll vortices?
- Why were roll vortices so large in Sandy?

Thank you!

- More visualizations
 - Mesoscale Analysis of Sandy's Landfall Winds seedme.org/node/163591
 - WRF Users' Workshop 2016 Visualizations seedme.org/node/70880
 - Sandy WRF Discovery Paper
 <u>seedme.org/node/47360</u>
- A paper on Sandy's roll vortices is nearing completion
- My contact

- jimschiavone@gmail.com